

Enhancing Graph Neural Networks with Topological Structures

Fragkiskos D. Malliaros

CentraleSupélec, Inria, Université Paris-Saclay

June 26, 2025

Node Classification

Link Prediction

Community Detection (or Graph Clustering)

Graph Representation Learning

Learn features by transforming the graph into a low-dimensional latent representation

Challenges. Trustworthy models while dealing with the **complex** structure of **information-rich**, **large-scale** graphs

Part I. Brief introduction to Graph Neural Networks (GNN)

Part II. Topics in GNN model design: over-squashing, pooling, generalization

Part III. Perspectives and ongoing work

Graph (A, X)

y ij	Link prediction
	$\mathbf{y}_{ij} = f(\mathbf{h}_i, \mathbf{h}_j)$

Different instances of GNN layers

Convolutional GNNs (e.g., ChebNet, GCN, SGC) $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in \mathcal{N}_{i}} c_{ij}\psi\left(\mathbf{h}_{j}^{(l)}\right)\right)$ \uparrow node degree **GNNs with Attention** (e.g., GAT) $\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in \mathcal{N}_{i}} \alpha \left(\mathbf{h}_{i}^{(l-1)}, \mathbf{h}_{j}^{(l-1)} \right) \psi \left(\mathbf{h}_{j}^{(l)} \right) \right)$ **attention mechanism**

Challenges in GNN Model Design

- 1. How to design **deep** GNNs?
 - Graph rewiring to address over-smoothing and over-squashing (SJLR)
- 2. How to compute **graph-level** representations?
 - Hierarchical clustering-based graph pooling (HoscPool)
- 3. How to improve **generalization** of GNNs?
 - Framework for graph data augmentation (GRATIN)

Leverage structural (topological) information and beyond.

On the Trade-off between Over-smoothing and Over-squashing in GNNs

w/ J.H. Giraldo, K. Skianis, T. Bouwmans

CIKM '23

• Visiting PhD student

• Assistant Professor at Télécom Paris

Univ. of Ioannina

La Rochelle **Université**

J.H. Giraldo

Long-range Dependencies and Deep GNNs

Long-range Dependencies and Deep GNNs

• **Over-smoothing:** node embeddings become **indistinguishable** with more GNN layers

Long-range Dependencies and Deep GNNs

- **Over-smoothing:** node embeddings become **indistinguishable** with more GNN layers
- **Over-squashing:** information from distant nodes is **squeezed** on **bottleneck** edges

Overview of Key Findings

- We establish a fundamental **topological relationship** between oversmoothing and over-squashing in deep GNNs
- We found that the **spectral gap** of a graph is intrinsically related to both problems
- There is an inherent **trade-off** between over-smoothing and over-squashing
- We introduce the **curvature-based** algorithm to mitigate this trade-off

The Over-smoothing – Over-squashing Trade-off

The stationary distribution on graphs

- Consider a simple GNN model without nonlinearities (e.g., SGC)
 - Repeated message passing is equivalent to applying a **random walk operator**
- For a random walk transition matrix **P** and initial distribution $\mathbf{f}: \mathcal{V} \to \mathbb{R}$, we can compute *s* such that

$$\|\mathbf{f}^{\mathsf{T}}\mathbf{P}^{s} - \boldsymbol{\pi}\| \le e^{-s\lambda_{2}} \frac{\max_{i} \sqrt{d_{i}}}{\min_{j} \sqrt{d_{j}}} \qquad s: \text{number of GNN layers} \\ \lambda_{2}: \text{spectral gap of } \mathbf{L}$$

- GNNs converge exponentially fast to the stationary distribution π when stacking several layers → over-smoothing
- The convergence depends on the spectral gap λ_2

The Over-smoothing – Over-squashing Trade-off Cheeger constant and bottlenecks

- Captures **structural bottlenecks** in the graph
- Cheeger constant and spectral gap: $2h_G \ge \lambda_2 \ge \frac{h_G^2}{2}$

- Small Cheeger constant h_G and λ_2 imply bottlenecks \rightarrow over-squashing

The Over-smoothing – Over-squashing Trade-off

The trade-off

$$h_G \ge \frac{1}{2s} \log \left(\frac{\max_i \sqrt{d_i}}{\epsilon \min_j \sqrt{d_j}} \right)$$

- If $s \to 0$ then $h_G \to \infty$: reduce bottlenecks by accelerating convergence to the stationary distribution. **Over-smoothing.**
- If $h_G \rightarrow 0$ then $s \rightarrow \infty$: avoid converging to the stationary distribution by promoting a bottleneck-like structure. **Over-squashing.**

- We can increase mixing time by **removing** some edges
 - Alleviate over-smoothing
- We increase λ_2 by **adding** edges, improving h_G
 - Alleviate over-squashing

SJLR: Key Ingredients

- We target to manipulate the **spectral gap** λ_2 via **graph rewiring**
- We borrow ideas from graph curvature $\kappa(i,j)$
 - **Increasing curvature** improves the spectral gap

[Bronstein, Physics-inspired GNNs '23]

- SJLR: Stochastic Jost and Liu Curvature (JLC) Rewiring
 - JLC: curvature metric based on triangles
 - Greedy algorithm: adds/removes edges during training to locally improve curvature
 - Graph structure + node features
 - Good performance in graph with both homophily and heterophily

SJLR: The Algorithm Stochastic Jost and Liu Curvature Rewiring

- (1) Compute a bank of **candidate edges** to add \mathcal{E}_a
 - Calculate and sort edges (*i*, *j*) based on the Jost and Liu Curvature (JLC)
- (2) Associate a score to every edge $(r, s) \in \mathcal{E}_a$
 - Average **improvement of curvature** of adding (*r*, *s*) to the graph
- (3) **Graph rewiring** during training
 - Add and drop edges stochastically based on the JLC metric + node feature similarity

SJLR: Experimental Results

Method	Cornell	Texas	Wisconsin	Chameleon	Squirrel	Actor	Cora	Citeseer	Pubmed	Overall
Baseline	$\frac{67.34}{+1.50}$	$58.05_{\pm 0.96}$	$52.10_{\pm 0.95}$	$40.35_{\pm 0.48}$	$42.12_{\pm 0.29}$	28.62 ± 0.36	$81.81_{\pm 0.26}$	$68.35_{\pm 0.35}$	$78.25_{\pm 0.37}$	<u>57.44</u>
RDC [32]	$63.78_{\pm 1.68}$	$59.47_{\pm 1.00}$	$50.89_{\pm 1.00}$	$40.33_{\pm 0.51}$	<u>41.98</u> ±0.31	$28.97_{\pm 0.33}$	$81.54_{\pm 0.26}$	$68.70_{\pm 0.35}$	$78.42_{\pm 0.39}$	57.12
GDC [19]	$64.18_{\pm 1.36}$	$56.43_{\pm 1.15}$	$49.61_{\pm 0.95}$	$38.49_{\pm 0.51}$	$33.20_{\pm 0.29}$	31.08 ± 0.27	$82.63_{\pm 0.23}$	$69.15_{\pm 0.30}$	79.04 ± 0.37	55.98
DE [42]	$63.39_{\pm 1.29}$	$57.41_{\pm 0.93}$	$47.84_{\pm 0.86}$	$40.80_{\pm 0.55}$	$41.68_{\pm 0.39}$	$29.99_{\pm 0.21}$	$81.90_{\pm 0.24}$	$68.99_{\pm 0.36}$	$78.53_{\pm 0.26}$	56.73
PN [56]	$64.44_{\pm 1.39}$	60.93 _{±1.15}	$51.78_{\pm 0.95}$	$40.37_{\pm 0.59}$	$40.92_{\pm 0.31}$	$28.21_{\pm 0.21}$	$78.89_{\pm 0.32}$	$66.95_{\pm 0.40}$	$76.60_{\pm 0.41}$	56.57
DGN [57]	$65.19_{\pm 1.79}$	$58.91_{\pm 0.93}$	$50.76_{\pm 0.92}$	$40.06_{\pm 0.60}$	$41.30_{\pm 0.32}$	$28.32_{\pm 0.36}$	$81.34_{\pm 0.31}$	$69.25_{\pm 0.35}$	$78.06_{\pm 0.42}$	57.02
FA [1]	$53.57_{\pm 0.00}$	$59.26_{\pm 0.00}$	$43.02_{\pm 0.49}$	$27.76_{\pm 0.29}$	$31.51_{\pm 0.00}$	$26.69_{\pm 0.50}$	$29.85_{\pm 0.00}$	$23.23_{\pm 0.00}$	$39.24_{\pm 0.00}$	37.13
SDRF [48]	$63.88_{\pm 1.68}$	$56.40_{\pm 0.89}$	$40.99_{\pm 0.62}$	$40.74_{\pm 0.45}$	$41.44_{\pm 0.37}$	28.95 ± 0.33	$81.42_{\pm 0.26}$	$69.37_{\pm 0.31}$	$77.74_{\pm 0.42}$	55.66
FoSR [27]	$56.65_{\pm 0.93}$	$50.01_{\pm 1.37}$	$53.73_{\pm 1.08}$	$40.26_{\pm 0.50}$	$41.83_{\pm 0.28}$	$28.80_{\pm 0.35}$	$81.79_{\pm 0.26}$	$67.99_{\pm 0.37}$	$78.26_{\pm 0.39}$	55.48
SJLR (ours)	71.75 $_{\pm 1.50}$	<u>60.13</u> ±0.89	$\textbf{55.16}_{\pm 0.95}$	$\textbf{41.19}_{\pm 0.46}$	$41.86_{\pm 0.29}$	$29.89_{\pm 0.20}$	<u>81.95</u> ±0.25	69.50 ±0.33	<u>78.60</u> ±0.33	58.89

Classification results for the **GCN** model

Method	Cornell	Texas	Wisconsin	Chameleon	Squirrel	Actor	Cora	Citeseer	Pubmed	Overall
Baseline	$53.40_{\pm 2.11}$	$56.69_{\pm 1.78}$	$47.90_{\pm 1.73}$	$38.40_{\pm 0.69}$	$40.52_{\pm 0.54}$	$29.93_{\pm 0.16}$	$76.94_{\pm 1.31}$	$67.45_{\pm 0.80}$	$71.79_{\pm 2.13}$	53.67
GDC [19]	$58.65_{\pm 1.43}$	$57.42_{\pm 0.74}$	$45.93_{\pm 1.05}$	$38.13_{\pm 0.55}$	$36.63_{\pm 0.31}$	$32.25_{\pm 0.17}$	$76.02_{\pm 1.70}$	$66.22_{\pm 1.13}$	$71.91_{\pm 2.30}$	53.68
DE [42]	<u>61.99</u> ±1.04	$57.88_{\pm 0.81}$	$54.78_{\pm 0.89}$	$40.38_{\pm 0.47}$	$41.28_{\pm 0.32}$	$30.62_{\pm 0.17}$	$80.59_{\pm 0.80}$	$68.63_{\pm 0.51}$	$74.47_{\pm 1.65}$	<u>56.74</u>
PN [56]	$53.11_{\pm 1.36}$	$50.47_{\pm 1.04}$	$48.72_{\pm 1.65}$	$41.49_{\pm 0.68}$	$39.72_{\pm 0.33}$	$22.58_{\pm 0.29}$	$75.55_{\pm 0.42}$	$64.16_{\pm 0.41}$	$73.81_{\pm 0.52}$	52.18
DGN [57]	$55.68_{\pm 1.32}$	$57.42_{\pm 2.59}$	$50.67_{\pm 2.08}$	$40.99_{\pm 0.62}$	$41.72_{\pm 0.29}$	$29.53_{\pm 0.18}$	$\frac{80.65}{\pm 0.48}$	$67.65_{\pm 0.59}$	$74.95_{\pm 0.59}$	55.47
SDRF [48]	$54.68_{\pm 1.29}$	$55.36_{\pm 1.48}$	$47.81_{\pm 1.51}$	$38.07_{\pm 0.77}$	$39.94_{\pm 0.53}$	$30.04_{\pm 0.17}$	$76.04_{\pm 1.69}$	$67.60_{\pm 0.80}$	$69.62_{\pm 2.35}$	53.24
FoSR [27]	$53.73_{\pm 1.75}$	$56.33_{\pm 1.37}$	$47.82_{\pm 2.14}$	$38.01_{\pm 0.73}$	$40.68_{\pm 0.42}$	$30.11_{\pm 0.18}$	$78.24_{\pm 0.98}$	$67.04_{\pm 0.83}$	$72.76_{\pm 2.35}$	53.86
SJLR (ours)	67.37 ±1.64	58.40 ±1.48	55.42 ±0.92	$40.17_{\pm 0.49}$	41.91 $_{\pm 0.34}$	<u>30.81</u> ±0.18	$81.24_{\pm 0.77}$	<u>68.39</u> ±0.69	76.28 ±0.96	57.78

Classification results for the **SGC** model

Main Takeaways

- Several ongoing research efforts on **rewiring techniques**
 - Batch Ollivier-Ricci Flow (BORF) [Nguyen et al., ICML '23]
 - First-order spectral rewiring (FoSR) [Karhadkar et al., ICLR '23]
 - Greedy Total Resistance (GTR) rewiring [Black et al., ICML '23]
 - Delaunay triangulation-based rewiring [Attali et al., ICML '24]
- Going further: leverage the **internal functioning** of GNNs
 - Impact of width, depth, and topology on over-squashing [Di Giovanni et al., ICML '23]
- Highly-effective deep GNNs?
 - Not quite there yet

Clustering and Pooling for GNNs

CIKM '22

PhD'24

Co-founder and CSO, Entalpic 🛛 🗛

Alexandre Duval

Why Structure-aware Graph Pooling?

Graph-level tasks (e.g., graph classification)

Global Pooling

- [©] Fast and easy to compute
- ^(C) Discards information about the **graph (clustering) structure**

(Motif) Spectral Clustering with GNNs

- Clustering based on both graph structure $\mathbf{A} \in \mathbb{R}^{N \times N}$ and node features $\mathbf{X} \in \mathbb{R}^{N \times F}$
- Compute new node features using GNN layers $\bar{\mathbf{X}} = \text{GNN}(\mathbf{A}, \mathbf{X}; \boldsymbol{\Theta}_{\text{GNN}})$
- Learn a **cluster assignment** matrix using an MLP $\mathbf{S} = FC(\bar{\mathbf{X}}; \mathbf{\Theta}) \in \mathbb{R}^{N \times K}$
- Train GNN and MLP by optimizing a **clustering loss** motif clustering $\longrightarrow \mathcal{L}_{mc} = -\frac{1}{K} \cdot \operatorname{Tr}\left(\frac{\mathbf{S}^{\top} \mathbf{A}_{M} \mathbf{S}}{\mathbf{S}^{\top} \mathbf{D}_{M} \mathbf{S}}\right)$ motif adjacency matrix

Types of motifs:

- We can allow combinations of motifs
- Hosc model: Higher-order spectral clustering

(Motif) Spectral Clustering with GNNs

- Clustering based on both graph structure $\mathbf{A} \in \mathbb{R}^{N \times N}$ and node features $\mathbf{X} \in \mathbb{R}^{N \times F}$
- Compute new node features using GNN layers $\bar{\mathbf{X}} = \text{GNN}(\mathbf{A}, \mathbf{X}; \boldsymbol{\Theta}_{\text{GNN}})$
- Learn a **cluster assignment** matrix using an MLP $\mathbf{S} = FC(\bar{\mathbf{X}}; \Theta) \in \mathbb{R}^{N \times K}$
- Train GNN and MLP by optimizing a **clustering loss** motif clustering $\longrightarrow \mathcal{L}_{mc} = -\frac{1}{K} \cdot \operatorname{Tr}\left(\frac{\mathbf{S}^{\top} \mathbf{A}_{M} \mathbf{S}}{\mathbf{S}^{\top} \mathbf{D}_{M} \mathbf{S}}\right)$ motif adjacency matrix Types of motifs:
 - We can allow combinations of motifs
 - Hosc model: Higher-order spectral clustering

HOSCPOOL: Hierachical Clustering-based Pooling

HoscPool: Experiments on Graph Clustering

HoscPool as an end-to-end higher-order clustering algorithm

• Architecture: message passing layer (GCN) + MLP

	spectral clustering	motif spectral clustering			••	•	•-• + •
Dataset	SC	MSC	DiffPool	MinCutPool	HoscPool-1	HoscPool-2	HoscPool
Cora	$0.150_{\pm 0.002}$	$0.056_{\pm 0.014}$	$0.308_{\pm 0.023}$	$0.391_{\pm 0.028}$	$0.435_{\pm 0.032}$	$0.464_{\pm 0.036}$	0.502 _{±0.029}
PubMed	$0.183_{\pm 0.002}$	$0.002_{\pm 0.000}$	$0.098_{\pm 0.006}$	$0.214_{\pm 0.066}$	$0.230_{\pm 0.071}$	$0.215_{\pm 0.073}$	$0.260_{\pm 0.054}$
Photo	$0.592_{\pm 0.008}$	$0.451_{\pm 0.011}$	$0.171_{\pm 0.004}$	$0.086_{\pm 0.014}$	$0.495_{\pm 0.068}$	$0.513_{\pm 0.083}$	$0.598_{\pm 0.101}$
PC	$0.464_{\pm 0.002}$	$0.166_{\pm 0.009}$	$0.043_{\pm 0.008}$	$0.026_{\pm 0.006}$	$0.497_{\pm 0.040}$	$0.499_{\pm 0.036}$	$0.528_{\pm 0.041}$
CS	$0.273_{\pm 0.006}$	$0.011_{\pm 0.009}$	$0.383_{\pm 0.048}$	$0.431_{\pm 0.060}$	$0.479_{\pm 0.022}$	$0.701_{\pm 0.029}$	$0.731_{\pm 0.018}$
DBLP	$0.027_{\pm 0.003}$	$0.005_{\pm 0.006}$	$0.186_{\pm 0.014}$	$0.334_{\pm 0.026}$	$0.326_{\pm 0.027}$	$0.284_{\pm 0.026}$	$0.312_{\pm 0.027}$
Polblogs	$0.017_{\pm 0.000}$	$0.014_{\pm 0.001}$	$0.317_{\pm 0.010}$	$0.440_{\pm 0.390}$	$0.992_{\pm 0.003}$	$0.994_{\pm 0.001}$	$0.994_{\pm 0.005}$
Email-eu	$0.485_{\pm 0.030}$	$0.382_{\pm 0.019}$	$0.096_{\pm 0.034}$	$0.253_{\pm 0.028}$	$0.317_{\pm 0.026}$	$0.488_{\pm 0.025}$	$\underline{0.476}_{\pm 0.021}$
Synı	$0.000_{\pm 0.000}$	1.000 ± 0.000	$0.035_{\pm 0.000}$	$0.043_{\pm 0.008}$	$0.041_{\pm 0.006}$	1.000 ± 0.000	1.000 ±0.000
Syn2	$0.003_{\pm 0.000}$	$0.050_{\pm 0.003}$	$0.081_{\pm 0.008}$	$0.902_{\pm 0.028}$	$0.942_{\pm 0.028}$	1.000 ± 0.000	1.000 ±0.000
Syn3	$\textbf{1.000}_{\pm 0.000}$	1.000 ± 0.000	$0.067_{\pm 0.001}$	$0.052_{\pm 0.002}$	$0.115_{\pm 0.006}$	$\underline{0.826}_{\pm 0.005}$	$1.000_{\pm 0.000}$

Clustering results (NMI) for the **HoscPool** model

HOSCPOOL: Experiments on Graph Classification

Method	Proteins	NCI1	Mutagen.	DD	Reddit-B	Cox2-MD	ER-MD	b-hard
NoPool	$71.6_{\pm 4.1}$	$77.1_{\pm 1.9}$	$78.1_{\pm 1.3}$	$71.2_{\pm 2.2}$	$80.1_{\pm 2.6}$	$58.7_{\pm 3.2}$	$72.2_{\pm 2.9}$	$66.5_{\pm 0.5}$
Random	$75.7_{\pm 3.2}$	$77.0_{\pm 1.7}$	$79.2_{\pm 1.3}$	$77.1_{\pm 1.5}$	$89.3_{\pm 2.6}$	$62.9_{\pm 3.6}$	$73.0_{\pm 4.5}$	$69.1_{\pm 2.1}$
GMT	$75.0_{\pm 4.2}$	$74.9_{\pm 4.3}$	$79.4_{\pm 2.2}$	$78.1_{\pm 3.2}$	$86.7_{\pm 2.6}$	$58.9_{\pm 3.6}$	$74.3_{\pm 4.5}$	$70.1_{\pm 3.4}$
MinCutPool	$75.9_{\pm 2.4}$	$76.8_{\pm 1.6}$	$78.6_{\pm 1.8}$	$78.4_{\pm 2.8}$	$89.0_{\pm 1.4}$	$58.9_{\pm 5.1}$	$75.5_{\pm 4.0}$	$72.6_{\pm 1.5}$
DiffPool	$73.8_{\pm 3.7}$	$76.7_{\pm 2.1}$	$77.9_{\pm 2.3}$	$76.3_{\pm 2.1}$	$87.3_{\pm 2.4}$	$57.1_{\pm 4.8}$	$76.8_{\pm 4.8}$	$70.7_{\pm 2.0}$
EigPool	$74.2_{\pm 3.1}$	$75.0_{\pm 2.2}$	$75.2_{\pm 2.7}$	$75.1_{\pm 1.8}$	$82.8_{\pm 2.1}$	$59.8_{\pm 3.4}$	$73.1_{\pm 3.8}$	$69.1_{\pm 3.1}$
SAGPool	$70.6_{\pm 3.5}$	$74.1_{\pm 3.9}$	$74.4_{\pm 2.7}$	$71.5_{\pm 4.1}$	$74.7_{\pm 4.5}$	$56.9_{\pm 9.7}$	$71.7_{\pm 8.2}$	$39.6_{\pm 9.6}$
ASAP	$74.4_{\pm 2.6}$	$74.3_{\pm 1.6}$	$76.8_{\pm 2.4}$	$73.2_{\pm 2.5}$	$84.1_{\pm1.1}$	$60.5_{\pm 5.5}$	$74.5_{\pm 5.9}$	$70.5_{\pm 1.7}$
HoscPool-1	$76.7_{\pm 2.5}$	$77.3_{\pm 1.6}$	$79.8_{\pm 1.6}$	$78.8_{\pm 2.0}$	$91.2_{\pm 1.0}$	$61.6_{\pm 3.5}$	$76.2_{\pm 4.2}$	$72.4_{\pm 0.8}$
HoscPool-2	$77.0_{\pm 3.1}$	80.3 $_{\pm 2.0}$	$92.8_{\pm 1.5}$	66.4 $_{\pm 4.6}$	$92.8_{\pm 1.5}$	66.4 $_{\pm 4.6}$	$77.9_{\pm 4.3}$	$73.5_{\pm 0.8}$
HoscPool	$77.5_{\pm 2.3}$	$\underline{79.9}_{\pm 1.7}$	$82.3_{\pm 1.3}$	$79.4_{\pm 1.8}$	$93.6_{\pm 0.9}$	$\underline{64.6}_{\pm 3.9}$	$78.2_{\pm 3.8}$	74.0 $_{\pm 0.4}$

Classification accuracy for the **HoscPool** model

Main Takeaways

• End-to-end clustering with GNNs

Leverages graph topology + node features
 Avoids eigenvalue decomposition of the Laplacian matrix
 Allows clustering of out-of-sample graphs

Higher-order topological information ③ Flexible mechanism of HoscPool

- Performance of hierarchical clustering-based pooling
 - Graph classification benchmarks: small molecular graphs

Generalization of GNNs

w/Y.Abbahaddou, J. Lutzeyer, A. Aboussalah, M. Vazirgiannis

ICML²⁵

• PhD student (graduating in July '25)

• Looking for a postdoc position.

🧭 IP PARIS

Generalization on GNNs and Challenges

- **Goal:** learn a predictor f_{θ} that performs well on **new graphs** $\mathcal{G} \sim \mathcal{D}_{\text{test}}$ different from those in the **training set** $\mathcal{D}_{\text{train}}$
- Why a **challenging** problem?
 - Topology shift
 - Size shift
 - Feature distribution shift

- Regularization
- Architecture refinements
- Data augmentation

 $\mathcal{D}_{ ext{train}}$

 $\mathcal{D}_{\text{test}}$

37

A Theoretical Framework for Graph Data Augmentation

• Augmentation strategy: For each training graph (\mathcal{G}_n, y_n) , the generator \mathbf{A}_{λ} produces M samples

$$(\tilde{\mathcal{G}}_n^m, \tilde{y}_n^m) \sim \mathbf{A}_{\lambda}(\mathcal{G}_n, y_n), \qquad m = 1, \dots, M$$

Vanilla training

Training with augmentation

Training set
$$\mathcal{D}_{\text{train}} = \{(\mathcal{G}_n, y_n)\}_{n=1}^N \longrightarrow \widetilde{\mathcal{D}}_{\text{train}} = \mathcal{D}_{\text{train}} \cup \{(\widetilde{\mathcal{G}}_n^m, \widetilde{y}_n^m)\}_{n=1..N}^{m=1..M}$$

Empirical risk $\mathcal{L}(\theta) = \frac{1}{N} \sum_{n=1}^N \ell(\mathcal{G}_n, \theta) \longrightarrow \mathcal{L}_{\text{aug}}(\theta) = \frac{1}{N} \sum_{n=1}^N \frac{1}{M} \sum_{m=1}^M \ell(\widetilde{\mathcal{G}}_n^m, \theta)$

Optimal parameters
$$\theta_{\star} \simeq \hat{\theta} = \arg\min_{\theta} \mathcal{L}(\theta) \implies \hat{\theta}_{aug} = \arg\min_{\theta} \mathcal{L}_{aug}(\theta)$$

A Theoretical Framework for Graph Data Augmentation

Goals of augmentation: minimize the generalization error

Let $\ell(\cdot, \cdot) \in [0, 1]$ be a classification loss function. Then, with a probability at least $1 - \delta$ over the samples $\mathcal{D}_{\text{train}}$, we have $\|\mathbf{h}_{\tilde{G}} - \mathbf{h}_{\mathcal{G}}\|$

$$\mathbb{E}_{\mathcal{G}\sim\mathcal{D}}\left[\ell(\mathcal{G},\hat{\theta}_{\mathrm{aug}})\right] - \mathbb{E}_{\mathcal{G}\sim\mathcal{D}}\left[\ell(\mathcal{G},\theta_{\star})\right] \leq 2\mathcal{R}(\ell_{\mathrm{aug}}) + 5\sqrt{\frac{2\log(4/\delta)}{N}} + 2L_{\mathrm{Lip}}\mathbb{E}_{\mathcal{G}\sim\mathcal{D},\widetilde{\mathcal{G}}\sim A_{\lambda}}\left[\left\|\widetilde{\mathcal{G}}-\mathcal{D},\widetilde{\mathcal{G}}^{\ast}\right\|_{\mathcal{H}}\right]$$

generalization error

Rademacher complexity capacity of the GNN to fit random noise

$$\mathcal{R}(\ell_{\text{aug}}) = \mathbb{E}_{\epsilon_n \sim P_{\epsilon}} \left[\sup_{\theta \in \Theta} \left| \frac{1}{N} \sum_{n=1}^{N} \epsilon_n \ell_{\text{aug}}(\mathcal{G}_n, \theta) \right| \right]$$

If augmented graphs are too far from originals, the bound becomes large

augmentation error distance between the original graph and the

augmented samples

GRATIN: GMM-based Augmentation

Gratin dauphinois 🃎

- 1. Train GNN $f(\cdot, \theta) = \Psi \circ \texttt{Pool} \circ g$
- 2. Embed graphs $\mathcal{H} = \{\mathbf{h}_{\mathcal{G}}, \mathcal{G} \in \mathcal{D}_{train}\}$
- 3. Class-wise split $\mathcal{H} = \bigcup_{c=1}^{\circ} \mathcal{H}_c$, where $\mathcal{D}_c = \{\mathcal{G}_n \in \mathcal{D}_{\text{train}}, y_n = c\}$
- 4. Fit GMM and sample $p_c = \text{GMM}(\mathcal{H}_c)$
- 5. Fine-tune head: freeze $g(\cdot)$ and train $\Psi(\cdot)$ on $\mathcal{H} \cup \mathcal{H}$

GRATIN: Experimental Results

Model	IMDB-BIN	IMDB-MUL	MUTAG	PROTEINS	DD
No Aug.	$73.00{\pm}4.94$	$47.73 {\pm} 2.64$	$73.92{\pm}5.09$	$69.99{\scriptstyle \pm 5.35}$	$69.69{\pm}2.89$
DropEdge	$71.70{\pm}5.42$	$45.67{\scriptstyle\pm2.46}$	$73.39{\scriptstyle\pm8.86}$	$70.07{\pm}3.86$	$69.35{\scriptstyle \pm 3.37}$
DropNode	$74.00{\scriptstyle\pm3.44}$	$43.80{\scriptstyle \pm 3.54}$	$73.89{\scriptstyle\pm8.53}$	$69.81{\scriptstyle \pm 4.61}$	$69.01 {\pm} 3.95$
SubMix	$\underline{72.70{\scriptstyle\pm5.59}}$	$46.00{\scriptstyle\pm2.44}$	$\underline{77.13}{\scriptstyle \pm 9.69}$	$67.57{\scriptstyle\pm4.56}$	$70.11{\pm}4.48$
$\mathcal{G} ext{-Mixup}$	$72.10{\pm}3.27$	$48.33{\scriptstyle \pm 3.06}$	$88.77{\scriptstyle\pm5.71}$	$65.68{\scriptstyle\pm5.03}$	$61.20{\pm}3.88$
GeoMix	$69.69{\pm}3.37$	$\underline{49.80{\scriptstyle\pm4.71}}$	$74.39{\pm}7.37$	$69.63{\scriptstyle \pm 5.37}$	$68.50{\pm}3.74$
GRATIN	$71.00{\pm}4.40$	$49.82{\scriptstyle\pm4.26}$	$76.05 {\pm} 6.74$	$70.97{\scriptstyle\pm5.07}$	$71.90{\scriptstyle \pm 2.81}$

Graph classification results for the **GRATIN** model on a GCN backbone

Main Takeaways

- "Mixup"-like techniques on graphs
 - ③ Improve generalization through augmentations
 - G-Mixup [Han et al., ICML '22], GeoMix [Zhao et al. KDD '24]
- GRATIN: augmentations on the graph embedding-space
 Combines structure + features
 Avoid costly graph alignment
 Scalability
- Augmentations with Gaussian Mixture Models (GMMs)
 - ③ Expressive yet simple
 - $\textcircled{\sc opt}$ A GMM is a universal approximator of densities

Outline of the Presentation

Part I. Brief introduction to Graph Neural Networks (GNN)

Part II. Topics in GNN model design

Part III. Perspectives and ongoing work

Perspectives

- Leverage **structural information** and beyond for GNNs
 - Rewiring, graph pooling, and generalization
- On complex models
 - GNNs, Hypergraph GNNs, Simplicial Complex Neural Networks, ...
- On proper model evaluation
 - Realistic datasets; proper experimental protocol; proper metrics
- On problem modeling and practical applications
 - Type of graph; node features; which learning problem

Beware of GNN Evaluation and Benchmarking

Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks

Maya Bechler-Speicher^{*12} Ben Finkelshtein^{*3} Fabrizio Frasca^{*4} Luis Müller^{*5} Jan Tönshoff^{*5} Antoine Siraudin⁵ Viktor Zaverkin⁶ Michael M. Bronstein³ Mathias Niepert⁷ Bryan Perozzi⁸ Mikhail Galkin⁸ Christopher Morris⁵

Spatiotemporal Graph Learning

time

Continuous Product Graph Neural Networks

Aref Einizade LTCI, Télécom Paris Institut Polytechnique de Paris

Fragkiskos D. Malliaros CentraleSupélec, Inria Université Paris-Saclav aref.einizade@telecom-paris.fr fragkiskos.malliaros@centralesupelec.fr

> Jhony H. Giraldo LTCI. Télécom Paris Institut Polytechnique de Paris jhony.giraldo@telecom-paris.fr

[Einizade et al., NeurIPS '24]

Spatiotemporal prediction with GNNs

- Enhance predictions with **relational** $_{\mathcal{G}, 1}$ inductive biases
- Tasks •
 - Time series forecasting
 - Missing value completion (imputation)
 - Graph structure learning M

Gegenbauer Graph Neural Networks for Time-varying Signal Reconstruction

Jhon A. Castro-Correa, Jhony H. Giraldo, Mohsen Badiey, Fragkiskos D. Malliaros

[Castro-Correa et al., IEEE Trans. Neural Netw. Learn. Syst. '24]

Geometric Graph Neural Networks (GNNs)

for 3D atomic systems

FAENet: Frame Averaging Equivariant GNN for Materials Modeling

Alexandre Duval^{*12} Victor Schmidt^{*2} Alex Hernandez Garcia² Santiago Miret³ Fragkiskos D. Malliaros Yoshua Bengio²⁴ David Rolnick²⁵

A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems

Alexandre Duval^{*,1,2} Simon V. Mathis^{*,3} Chaitanya K. Joshi^{*,3} Victor Schmidt^{*,1,4} Santiago Miret⁵ Fragkiskos D. Malliaros² Taco Cohen⁶ Pietro Liò³ Yoshua Bengio^{1,4} Michael Bronstein⁷

¹Mila ²Université Paris-Saclay[†] ³University of Cambridge ⁴Université de Montréal ⁵Intel Labs ⁶Qualcomm AI Research[‡] ⁷University of Oxford

Thank You!

Web: http://fragkiskos.me Email: fragkiskos.malliaros@centralesupelec.fr

NOKIA BELL ' ABS

ΕΝΤΔLΡΙC

Science des données, Intelligence & Société

Backup Slides

Motif Spectral Clustering – Reformulation

50