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What is Constraint Programming (CP)?

"Constraint programming represents one of the closest approaches computer science has yet made to the
Holy Grail of programming: the user states the problem, the computer solves it."

Eugene C. Freuder

In other words: CP = Model + Search
Model Define a mathematical model by means of variables and constraints
Search Use a generic solver to search for a solution

What is the difference with ILP (Integer Linear Programming) or SAT?

Richer modelling language

ILP: Model = Linear inequations + Linear objective function
SAT: Model = Boolean formula
CP: Model = Conjunction of various kinds of constraints
 Each constraint comes with its own propagation algorithm
 If your favorite constraint does not exist, you can create it!

Different solving approach: Branch & Propagate (vs Branch & Bound/Cut/Price for ILP or CDCL for SAT)
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Overview of the talk

1 Modelling with CP

2 Generic CP Solving Algorithms

3 LAD2025: A Constraint-based Solver for the SIP

4 Conclusion
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Modelling with CP

CP model = (X ,D,C)[+F ]

X = Set of variables (unknowns)

For each variable xi ∈ X , D(xi) = domain of xi

 Set of values that may be assigned to xi

C = Constraints (relations between variables of X )

[Optionally] F : X → R = objective function to optimize

Solution of a CP model:

Assignment of a value to every variable of X such that:

Each variable xi ∈ X is assigned to a value that belongs to D(xi)

Every constraint of C is satisfied

[Optionally] F is maximized (or minimized)

Remark: A problem may have several different models...
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Example: Subgraph Isomorphism Problem (SIP)

Definition of the SIP:

Given Gp = (Vp,Ep) and Gt = (Vt ,Et):
find an injective mapping f : Vp → Vt such that
∀(i, j) ∈ Ep, (f (i), f (j)) ∈ Et

Example of SIP instance:

1

2

3 4

Gp = (Vp,Ep)

a b

c d

e f

Gt = (Vt ,Et )

1

Ullmann: An algorithm for subgraph isomorphism, in J. ACM, 1976
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Given Gp = (Vp,Ep) and Gt = (Vt ,Et):
find an injective mapping f : Vp → Vt such that
∀(i, j) ∈ Ep, (f (i), f (j)) ∈ Et

CP model introduced by Ullmann in 19761:

Variables: X = {xi |i ∈ Vp}
Domains:
∀i ∈ Vp,D(xi) = {u ∈ Vt : d◦(i) ≤ d◦(u)}
Constraints:

f must be injective: ∀{i, j} ⊆ Vp, xi 6= xj

Edge constraints:
∀(i, j) ∈ Ep, (xi , xj) ∈ Et

Example of SIP instance:

1

2

3 4

Gp = (Vp,Ep)

a b

c d

e f

Gt = (Vt ,Et )

Domains:
D(x1) = D(x3) = D(x4) = {a, b, c, d , e, f}
D(x2) = {a, b, d , f}

1 Ullmann: An algorithm for subgraph isomorphism, in J. ACM, 1976
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Domains:
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1 Ullmann: An algorithm for subgraph isomorphism, in J. ACM, 1976
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Example: Subgraph Isomorphism Problem (SIP)

Definition of the SIP:

Given Gp = (Vp,Ep) and Gt = (Vt ,Et):
find an injective mapping f : Vp → Vt such that
∀(i, j) ∈ Ep, (f (i), f (j)) ∈ Et

Other CP model with binary variables:

Variables: X = {xij |i ∈ Vp, j ∈ Vt}
Domains: ∀i ∈ Vp, ∀j ∈ Vt ,D(xij) = {0, 1}
Constraints:

f must be injective:
∀i ∈ Vp,

∑
j xij = 1 ∧ ∀j ∈ Vt ,

∑
i xij ≤ 1

Edge constraints:
∀(i1, i2) ∈ Ep, ∀(j1, j2) ∈
Vt × Vt \ Et , xi1 j1 + xi2 j2 < 2

Example of SIP instance:

1

2

3 4

Gp = (Vp,Ep)

a b

c d

e f

Gt = (Vt ,Et )

Example of solution:

x1f = x2d = x3a = x4b = 1

All other variables are set to 0

1 Ullmann: An algorithm for subgraph isomorphism, in J. ACM, 1976
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CP Languages and Libraries

First CP language introduced by Jean-Louis Laurière in 1976:

ALICE

Extensions of Prolog:

CHIP, Prolog V, Gnu-Prolog, Sicstus Prolog, Picat, ...

Libraries:

Open source: Choco (Java), PyCSP3 (Python), OR-Tools/Google (C++, Java, Python, ...), etc

Commercial: CP-Optimizer (IBM)

Modelling languages (accepted by most solvers):

MiniZinc, XCSP3
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Example: SIP in PyCSP3 (using a notebook)
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OK, the model is nice (isn’t it?)... but is it efficient?
Comparison of ACE1 (default solver of PyCSP3) with RI2 and LAD20253 on a subset of instances

Number of instances NOT solved within 100s:

LV rand meshes all
ACE default 85 30 46 161
ACE tuned 72 22 37 131
RI 152 8 284 324
LAD2025 32 5 1 38

ACE solves more instances when tuning parameters

ACE solves more instances than RI on LV and meshes
But it is less successful on rand instances

ACE is outperformed by LAD2025

What about solving times?

1 Lecoutre: ACE, a generic constraint solver, arXiv, 2023
2 Bonnici, Giugno. On the variable ordering in subgraph isomorphism algorithms, in IEEE Trans. Bioinform., 2017
3 Solnon: LAD2025, a Constraint-Based Solver for the Subgraph Isomorphism Problem, 2025 (submitted)
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Branch & Propagate Solving Approach

Branch:

Choose an unassigned variable xi

For each v ∈ D(xi), recursively solve a subproblem where v is assigned to xi

 Stop when a solution is found; Backtrack when an inconsistency is detected

Propagate constraints at each subproblem:

Goal: Remove inconsistent values from variable domains
 Inconsistency detected whenever a domain is wiped out

Each constraint comes with its own propagation algorithms
 Easy to add new kinds of constraints
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A first (very simple) propagation: Forward Checking (FC)

Propagate a constraint whenever all its variables but one are assigned

 Remove inconsistent values from the domains of unassigned variables

Example of SIP instance:

1

2 3 4

5

6Gp

a

b c d e

f

g Gt

Initial domains:
D(x1) = D(x3) = D(x5) = D(x6) = {a, b, c, d , e, f , g}
D(x2) = D(x4) = {a, b, d}

FC propagation when x3 = e:

∀i ∈ {1, 5, 6}, xi 6= e
 Remove e from D(xi)

∀i ∈ {1, 2, 4}, (xi , e) ∈ Et

 Remove b, c, and f from D(x1)
 Remove b from D(x2) and D(x4)

This is similar to what is done in VF21

1

Cordella, Foggia, Sansone, Vento. A (sub)graph isomorphism algorithm for matching large graphs, in PAMI, 2004
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Stronger propagation: Ensuring Domain Consistency

A constraint c defined over a set S ⊆ X of k variables is Domain Consistent (DC) if:

∀xi ∈ S, ∀vi ∈ D(xi),∀xj ∈ S \ {xi}, ∃vj ∈ D(xj) such that c is satisfied by the assignment x1 = v1, ..., xk = vk

Example of SIP instance:

1

2 3 4

5

6Gp

a

b c d e

f

g Gt

Let’s assume that x3 = e.

Domains reduced by FC in this case:

D(x1) = {a, d , g}
D(x2) = {a, d}

D(x4) = {a, d}
D(x5) = D(x6) = {a, b, c, d , f , g}

Can we do better?

DC propagation of the constraint "(x1, x4) ∈ Et":

If x1 = g then x4 cannot be assigned to a neighbour of g
 Remove g from D(x1)
This corresponds to what is done by Ullmann1

1

Ullmann: An algorithm for subgraph isomorphism, in J. ACM, 1976
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Historical Notes on DC (aka as Arc Consistency)

DC has been introduced by Ullmann in 1976 for solving the SIP1

AC3 is the first "efficient" algorithm to ensure DC for binary constraints

Introduced by Mackworth in 19772

Time complexity in O(ed3) where e = number of constraints and d = maximum domain size
Space complexity in O(e)

AC4 is introduced by Mohr & Henderson in 19863

Space and time complexities in O(ed2)

Many (really many) algorithms introduced since then, with different time and space tradeoffs
 See the last volume of TAOCP4

1 Ullmann. An algorithm for subgraph isomorphism, in J. ACM, 1976
2 Mackworth. Consistency in networks of relations, in Artificial Intelligence, 1977
3 Mohr & Henderson. Arc and path consistency revisited, in Artificial Intelligence, 1986
4 Knuth. The Art of Computer Programming. Section 7.2.2.3: Constraint Satisfaction, 2025
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Global constraints

What is a global constraint?

Constraint defined over a set of variables (the cardinality of which is not fixed)

Examples of global constraints:

allDifferent(x1, . . . , xn)⇔ ∀{xi , xj} ⊆ {x1, . . . , xn}, xi 6= xj

sum(x1, . . . , xn, s)⇔
∑n

i=1 xi = s

atLeast(x1, . . . , xn, k , v)⇔ (
∑n

i=1[[xi = v ]]) ≥ k where [[xi = v ]] = 1 if xi = v , and 0 otherwise

... and many others (see our catalog of 423 global constraints1)

 Ease the modelling step

How to propagate a global constraint?

First possibility: Decompose it into existing constraints and use existing propagators

Second possibility: Design a dedicated propagator

1 https://sofdem.github.io/gccat/
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Example: Propagation of allDifferent1

Suppose that:

D(x1) = {a, b, d}
D(x2) = D(x3) = {b, c}
D(x4) = {c, d , e}

a

b

c

d

e

x1

x2

x3

x4

r s

Propagation of allDifferent(x1, x2, x3, x4)?

 Remove values that cannot belong to a solution

Algorithm for propagating allDifferent:

Build a variable/value bipartite graph
Add a source r and a sink s
Search for a maximum flow from r to s
 Algorithm of Hopcroft & Karp2 in O(p5/2)
 Inconsistency if |f | < |X |
Build the "final flow graph" and search for SCC
 Algorithm of Tarjan3 in O(p)
Remove i from D(xj) if SCC(i) 6=SCC(xj)

3

 Remove b from D(x1) and c from D(x4)

1 Régin. A filtering algorithm for constraints of difference in CSPs, in AAAI 1994
2

Hopcroft & Karp. An n5/2 algorithm for maximum matchings in bipartite graphs, in SIAM J. Comput., 1973

3

Tarjan. Depth-first search and linear graph algorithms, in SIAM J. Comput., 1972

4

Berge. Graphs and Hypergraphs, 1973
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Ordering heuristics

Branch (recall):

Choose an unassigned variable xi

For each v ∈ D(xi), recursively solve a subproblem where v is assigned to xi

 Stop when a solution is found; Backtrack when an inconsistency is detected

Classical variable ordering heuristics:

deg: Variable involved in the largest number of constraints Reduce tree depth
dom: Variable with the smallest domain Reduce tree width
dom
deg : Compromise between dom and deg
dom
wdeg : Each constraint has a weight (incremented on failures)
 divide |D(xi)| by sum of weights of constraints associated with xi

1

1 Boussemart et al. Boosting systematic search by weighting constraints, in ECAI 2004
2

Demirovic et al. Solution-based phase saving for CP: A value-selection heuristic to simulate local search, in CP 2018
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For each v ∈ D(xi), recursively solve a subproblem where v is assigned to xi

 Stop when a solution is found; Backtrack when an inconsistency is detected

Value ordering heuristics:

Choose values that are more likely to belong to solutions
 Useless for proving inconsistency of infeasible instances

Can be learned... but this may be expensive
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Constraint-based Solvers for the SIP

The SIP is straightforward to model with CP...

... and it’s easy to add application-dependent constraints or objective functions (related to labels, for example)

... but generic CP solvers suffer from a rather long initialisation process

Constraint-based solvers dedicated to the SIP:

Combine Branch & Propagate with dedicated data structures, heuristics, propagators, ...

For example: Ullman1, LV2, ILF3, LAD4, SND5, Glasgow6, PathLAD+7, ... and LAD20258

1 Ullmann. An algorithm for subgraph isomorphism, in J. ACM 1976
2 Larrosa and Valiente. Constraint satisfaction algorithms for graph pattern matching. Mathematical. Structures, in Comp. Sci. 2002
3 Zampelli et al. Solving subgraph isomorphism problems with constraint programming, in Constraints 2010
4 Solnon. Alldifferent-based filtering for subgraph isomorphism, in Art. Int. 2010
5 Audemard et al. Scoring-based neighborhood dominance for the subgraph isomorphism problem, in CP 2014
6 McCreesh et al. The glasgow subgraph solver: Using CP to tackle hard SIP variants, in ICGT 2020
7 Wang et al. PathLAD+: An Improved Exact Algorithm for Subgraph Isomorphism Problem, in IJCAI 2023
8 Solnon: LAD2025, a Constraint-Based Solver for the Subgraph Isomorphism Problem, 2025 (submitted)
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V1 of LAD1

 Propagation of Locally All Different (LAD) constraints

Definition of LAD(xi , u) with i ∈ Vp and u ∈ Vt :

(xi = u)⇒ (∀j ∈ adj(i), xj ∈ adj(u)) ∧ allDifferent({xj | j ∈ adj(i)})

Example: Propagation of LAD when i = 1 and u = g

1

2 3 4

5

6Gp Gt

a

b c d e

f

g

D(x2) = D(x4) = {a, b, d}
D(x1) = D(x3) = D(x5) = D(x6) = Vt

(x1 = g)⇒ x2, x3, x4 ∈ {b, e, f} ∧ allDifferent(x2, x3, x4)

b

e

f

x2

x3

x4

Propagating LAD(x1, g) removes g from D(x1)

1 Solnon. AllDifferent-based filtering for subgraph isomorphism, in Artificial Intelligence, 2010
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V2 of LAD = PathLAD1

 Propagation of path-based constraints

Definition of path-based constraints2:

Let p2(i,G) be the number of 2-paths starting from i in G
 ∀i ∈ Vp, p2(i,Gp) ≤ p2(xi ,Gt)

Let p2(i, j,G) be the number of 2-paths between i and j in G
 ∀i, j ∈ Vp, p2(i, j,Gp) ≤ p2(xi , xj ,Gt)

Example:

1

2

4

3

Gp

a

b

c

de Gt

Propagation of p2(1,Gp) ≤ p2(a,Gt):
p2(1,Gp) = 4 and p2(a,Gt) = 3
 Remove a from D(x1)

Propagation of p2(2, 4,Gp) ≤ p2(b, d ,Gt) when x2 = b:
p2(2, 4,Gp) = 2 and p2(b, d ,Gt) = 1
 Remove d from D(x4)

1 Kotthoff, McCreesh, Solnon. Portfolios of subgraph isomorphism algorithms, in LION 2016
2 McCreesh, Prosser. A parallel, backjumping subgraph isomorphism algorithm using supplemental graphs, in CP 2015
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 ∀i, j ∈ Vp, p2(i, j,Gp) ≤ p2(xi , xj ,Gt)

Example:

1

2

4

3

Gp

a

b

c

de Gt

Propagation of p2(1,Gp) ≤ p2(a,Gt):
p2(1,Gp) = 4 and p2(a,Gt) = 3
 Remove a from D(x1)

Propagation of p2(2, 4,Gp) ≤ p2(b, d ,Gt) when x2 = b:
p2(2, 4,Gp) = 2 and p2(b, d ,Gt) = 1
 Remove d from D(x4)

1 Kotthoff, McCreesh, Solnon. Portfolios of subgraph isomorphism algorithms, in LION 2016
2 McCreesh, Prosser. A parallel, backjumping subgraph isomorphism algorithm using supplemental graphs, in CP 2015
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V3 of LAD
 Refactoring of PathLAD (mostly based on tips from Knuth1 :-)

Main improvements:

Generalize the use of Sparse Sets2 to restore states in constant time when backtracking

Use time-stamps to wipe-out sets in constant time

Use Tarjan instead of Kosaraju to search for strongly connected components

Use Ford-Fulkerson instead of Hopcroft-Karp to search for covering matchings3

...

Was it worth refactoring?

1 Knuth. The Art of Computer Programming (Fascicule 7: Constraint Satisfaction), 2025
2 Le Clément, Schaus, Solnon, Lecoutre: Sparse-Sets for Domain Implementation, in TRICS, 2013
3 Gent, Miguel, Nightingale: Generalised arc consistency for the alldifferent constraint: An empirical survey in AI 2008
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Experimental Evaluation: Benchmark Description
15,128 instances coming from 8 existing benchmarks

Instances coming from real applications: Images and Meshes
Random instances: randER (Erdös-Rényi, including hard instances) and rand (other models)
Instances generated from the Stanford graph base: LV
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Number of instances NOT solved when the time limit is 100s (average solving time if all solved):

LV RandER Meshes Rand Images All benchmarks
V2 = PathLAD 222 278 51 0 (0.18s) 0 (0.86s) 551
V3 = Refactoring of V2 170 226 44 0 (0.03s) 0 (0.02s) 440

Evolution of the cumulative number of solved instances wrt time:
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V4 of LAD
 V3 of LAD + Propagation of Clique-based Constraints

Constraints based on maximum cliques1:

Let χ(i,G) be the order of the largest clique of G that contains i
 ∀i ∈ Vp, χ(i,Gp) ≥ χ(xi ,Gt)
 Used to filter domains before starting the search

Constraints based on the number of k -cliques (cliques of order k ), with k ∈ {3, 4, 5, 6}:
Let c(i, k ,G) be the number of k -cliques of G that contain i
 ∀i ∈ Vp, c(i, k ,Gp) ≥ c(xi , k ,Gt)
 Used to filter domains before starting the search
Let c(i, j, k ,G) be the number of k -cliques of G that contain i and j
 ∀i, j ∈ Vp, c(i, j, k ,Gp) ≥ c(xi , xj , k ,Gt)
 Used to tighten LAD constraints during the search

Implementation "details":

Use efficient algorithms for computing cliques
First compute cliques in Gp to derive bounds for the computation of cliques in Gt

1 Kraiczy, McCreesh. Solving graph homomorphism and SIPs faster through clique neighbourhood constraints, in IJCAI 2021
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Number of instances NOT solved when the time limit is 100s (average solving time if all solved):

LV RandER Meshes Rand Images All benchmarks
V3 = Refactoring of V2 170 226 44 0 (0.03s) 0 (0.02s) 440
V4 = V3 + Cliques 142 200 45 0 (0.02s) 0 (0.01s) 387

Evolution of the cumulative number of solved instances wrt time:

25/35



V5 of LAD
 V4 of LAD + Variable Ordering Heuristic

Variable ordering heuristic used in V4: MinDom

Select the variable xi that minimizes |D(xi)|
 Break ties by maximizing the degree of the pattern vertex i
 Break further ties randomly

Variable ordering heuristic used in V5: MinDom/wdeg1

Select the variable xi that minimizes
|D(xi)|∑

c∈C(xi )
w(c)

where

C(xi) = set of constraints that involve xi and at least one unassigned variable
w(c) = number of times the propagation of c has raised a failure

 Dynamically identify critical variables that must be assigned first

1 Boussemart et al. Boosting systematic search by weighting constraints, in ECAI 2004
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Number of instances NOT solved when the time limit is 100s (average solving time if all solved):

LV RandER Meshes Rand Images All benchmarks
V4 = V3 + Cliques 142 200 45 0 (0.02s) 0 (0.01s) 387
V5 = V4 + minDom/wdeg 105 187 1 0 (0.02s) 0 (0.01s) 293

Evolution of the cumulative number of solved instances wrt time:
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V6 of LAD
 V5 of LAD + Restarts and Randomized Value Ordering Heuristic

Restarts1:

Restart the search when the number of failures reaches a cutoff limit

Geometric progression of the cutoff limit from one restart to the next one

 Avoids heavy tails when combined with randomized ordering heuristics

NoGood recording2:

After each restart, add a constraint to forbid the exploration of nodes already explored

Value Ordering Heuristic:

Degree-biased heuristic3: The probability to choose a target vertex is proportional to its degree

Combined with saving: Give priority to values used in the largest assignment built so far

1 Gomes, Selman, Kautz: Boosting combinatorial search through randomization, in AAAI 1998
2 Lee, Schulte, Zhu: Increasing nogoods in restart-based search, in AAAI 2016
3 Archibald et al: Sequential and parallel solution-biased search for subgraph algorithms, in CPAIOR 2019
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Number of instances NOT solved when the time limit is 100s (average solving time if all solved):

LV RandER Meshes Rand Images All benchmarks
V5 = V4 + minDom/wdeg 105 187 1 0 (0.02s) 0 (0.01s) 293
V6 = V5 + Restarts 91 133 1 0 (0.02s) 0 (0.01s) 225

Evolution of the cumulative number of solved instances wrt time:
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V7 of LAD = LAD2025
 V6 of LAD + Per Instance Propagation Selection

Two complementary propagation algorithms for the subgraph isomorphism problem:

DC of LAD constraints: Drastically filters domains, but very expensive on dense graphs

FC of basic edge constraints: Very fast, but filters less values

The "best" propagation algorithm depends on the instance to solve!

Per instance algorithm selection1:

Given a portfolio of solvers with complementary performance:

Learn a model for selecting the best performing solver for each instance

Use this model to select a solver at run time

Simple rule for selecting the propagation algorithm:

If the density of Gp and Gt exceeds 0.15: Select FC of edge constraints

Otherwise: Select DC of LAD constraints
1 Kotthoff, McCreesh, Solnon: Portfolios of subgraph isomorphism algorithms, in LION 2016
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Number of instances NOT solved when the time limit is 100s (average solving time if all solved):

LV RandER Meshes Rand Images All benchmarks
V6 = V5 + Restarts 91 133 1 0 (0.02s) 0 (0.01s) 225
V7 = V6 + Select 91 104 1 0 (0.02s) 0 (0.01s) 196

Evolution of the cumulative number of solved instances wrt time:
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Experimental comparison with state-of-the-art approaches

Number of instances NOT solved when the time limit is 1000s (average solving time if all solved):

LV RandER Meshes Rand Images All benchmarks
RI1 356 180 324 20 - 0 (0.003s) 880
Glasgow2 152 86 32 0 (0.042s) 0 (0.080s) 270
PathLAD+3 112 89 11 0 (0.198s) 0 (0.842s) 212
LAD20254 72 68 1 0 (0.024s) 0 (0.014s) 141

RI is the fastest approach on Images, but it is much less successful on all other benchmarks

LAD2025 is the most successful solver on all other benchmarks

1 Bonnici, Giugno. On the variable ordering in subgraph isomorphism algorithms, in IEEE Trans. Bioinform., 2017
2 Kraiczy, McCreesh. Solving graph homomorphism and SIPs faster through clique neighbourhood constraints, in IJCAI 2021
3 Wang, Jin, Cai, Lin. PathLAD+: An Improved Exact Algorithm for Subgraph Isomorphism Problem, in IJCAI 2023
4 Solnon: LAD2025, a Constraint-Based Solver for the Subgraph Isomorphism Problem, 2025 (submitted)
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Cumulative Number of Solved Instances wrt Time

RI is the most successful solver when the time limit is smaller than 0.03s
 But it solves 739 less instances than LAD2025 when the time limit is 1000s

LAD2025 is the most successful solver when the time limit is greater than 0.03s
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Overview of the talk

1 Modelling with CP

2 Generic CP Solving Algorithms

3 LAD2025: A Constraint-based Solver for the SIP

4 Conclusion
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Conclusion

Modelling and solving the subgraph isomorphism problem with CP

Very nice and straightforward model
 Application-dependent constraints and/or objective functions may be easily added

Generic CP solvers are able to solve medium-size instances...
...But they are not as efficient as state-of-the-art dedicated approaches

Constraint-based approaches for solving the subgraph isomorphism problem

Combine classical ingredients of CP solvers
 Constraint propagation, Ordering heuristics, Random restarts, NoGood recording, ...

With efficient data structures
 Sparse sets, Time stamps, ...

And dedicated graph invariants
 2-paths, max cliques, k -cliques

Some further work

Extension to directed and labelled graphs, and to the induced subgraph isomorphism problem
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